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Abstract

The characteristics of the sediment transported by rivers (e.g., sediment flux, grain
size distribution – GSD –) dictate whether rivers aggrade or erode their substrate. They
also condition the architecture and properties of sedimentary successions in basins. In
this study, we investigate the relationship between landscape steepness and the grain5

size of hillslope and fluvial sediments. The study area is located within the Feather
River Basin in Northern California, and studied basins are underlain exclusively by
tonalite lithology. Erosion rates in the study area vary over an order of magnitude, from
>250 mm ka−1 in the Feather River canyon to <15 mm ka−1 on an adjacent low relief
plateau. We find that the coarseness of hillslope sediment increases with increasing10

hillslope steepness and erosion rates. We hypothesize that, in our soil samples, the
measured ten-fold increase in D50 and doubling of the amount of fragments larger than
1 mm when slope increases from 0.38 to 0.83 m m−1 is due to a decrease in the res-
idence time of rock fragments, causing particles to be exposed for shorter periods of
time to processes that can reduce grain size. For slopes in excess of 0.7 m m−1, land-15

slides and scree cones supply much coarser sediment to rivers, with D50 and D84 more
than one order of magnitude larger than in soils. In the tributary basins of the Feather
River, a prominent break in slope developed in response to the rapid incision of the
Feather River. Downstream of the break in slope, fluvial sediment grain size increases,
due to an increase in flow competence (mostly driven by channel steepening) but also20

by a change in sediment source and in sediment dynamics: on the plateau upstream of
the break in slope, rivers transport easily mobilised fine-grained sediment derived ex-
clusively from soils. Downstream of the break in slope, mass wasting processes supply
a wide range of grain sizes that rivers entrain selectively, depending on the competence
of their flow. Our results also suggest that in this study site, hillslopes respond rapidly25

to an increase in the rate of base-level lowering compared to rivers.
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1 Introduction

In the rock cycle, clastic sediment is produced in upland mountainous areas. The type
of sediment delivered from hillslopes to the fluvial system conditions the characteris-
tics of the sediment that is transported by rivers and ultimately exported from mountain
ranges to sedimentary basins (Knighton, 1982; Parker, 1991; Heller et al., 2001; Attal5

and Lavé, 2006; Sklar et al., 2006; Chatanantavet et al., 2010; Whittaker et al., 2010;
Bennett et al., 2014; Michael et al., 2014). The grain size distribution (GSD) within hill-
slope soils and weathering profiles exerts a strong control on hillslope hydrology (e.g.,
Lohse and Dietrich, 2005) and chemical weathering rates by modulating particle sur-
face areas (e.g., White and Brantley, 2003; Yoo and Mudd, 2008) and water residence10

time (Maher, 2010). In bedrock rivers, sediment flux and GSD affect the ability of rivers
to erode their substrate in two ways: they control (i) the availability and effectiveness of
tools for bedrock erosion and (ii) the extent of the protective alluvial cover that the rivers
need to mobilise during floods for erosion to happen (e.g., Gilbert, 1877; Sklar and Di-
etrich, 2004; Cowie et al., 2008; Hobley et al., 2011). They also control the architecture15

and properties of the stratigraphic successions in sedimentary basins, because the
distance travelled by sediment particles before being deposited is dictated primarily by
their grain size (e.g., Duller et al., 2010; Whittaker et al., 2010; Armitage et al., 2011).
On the short term, fluvial sediment flux and GSD condition whether a river aggrades
or incises, both in upland areas and throughout sedimentary basins (e.g., Lane et al.,20

2007; Duller et al., 2010). This point is of particular relevance when considering the im-
pact of climate change and land use on river dynamics and on human infrastructures
within river basins, since both changing climate and land use modify sediment and wa-
ter fluxes from hillslopes to rivers, with potentially negative impact on the capacity of
rivers to hold water within their channels (Lane et al., 2007).25

The GSD of the sediment supplied to rivers is one of the main controls on the char-
acteristics of the sediment transported by rivers (i.e., GSD, bedload-to-total-load ratio
and lithologic content), the other main controls being abrasion, selective transport and
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sediment fluxes from hillslopes (Wolcott, 1988; Attal and Lavé, 2006; Sklar et al., 2006;
Whittaker et al., 2010). Numerical models suggest that in areas where rivers are ac-
tively incising into bedrock and net deposition is negligible, the continuous supply of
fresh material from hillslopes in uniformly eroded landscapes may offset the reduction
in grain size by abrasion and prevent downstream fining (Attal and Lavé, 2006; Sklar5

et al., 2006). Models have also shown that spatial variations in the grain size of the
sediment supplied to rivers could have a significant impact on the GSD of the sedi-
ment in the river: whereas the effect of a coarser point source would vanish a few km
downstream of the location of the point source (Sklar and Dietrich, 2006), a general
coarsening or fining of the sediment supplied to the river over a given area would lead10

to significant and potentially abrupt coarsening or fining of the fluvial sediment, which
could persist downstream for kilometres (Attal and Lavé, 2006; Sklar et al., 2006).
These model results have been corroborated by field observations in rivers in the Hi-
malayas and in the Apennines (Attal and Lavé, 2006; Whittaker et al., 2010). However,
whereas sediment fluxes from hillslopes have been quantified in many places on the15

short and long terms, by determining catchment-wide erosion rates or using mapping
methods (e.g., Hovius et al., 1997; West et al., 2005), little is known about the GSD of
the sediment being delivered to rivers and about the controls upon it (Wolcott, 1988;
Casagli et al., 2003; Attal and Lavé, 2006; Whittaker et al., 2010).

In non-glaciated areas, previous studies have shown that differences in hillslope20

steepness are associated with differences in hillslope processes: as gradient increases,
shallow hillslope erosion processes, e.g., ravelling and creeping, are replaced by
“steep-slope” erosion processes, e.g., landslides, rock fall and formation of large scree
cones. Such observations have been made in varied landscapes and contrasting cli-
matic settings (e.g. San Gabriel Mountains, California (Lavé and Burbank, 2004);25

Nanga Parbat massif, Himalayas (Burbank et al., 1996); Oregon Coast Range, Ore-
gon, (Roering et al., 1999)) and are consistent with the results of experimental studies
of hillslope sediment transport (Roering et al., 2001). Furthermore, initial data from
one catchment in the Apennines (Whittaker et al., 2007, 2010) suggest that erosion
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processes operating on steep hillslopes provide coarser material to the fluvial system
than erosion processes operating on gentle hillslopes. Lavé and Burbank (2004) made
similar qualitative observations in California. In addition, Attal and Lavé (2006) have
shown that lithology exerts a major control on the GSD of the sediment supplied by
landslides to the Marsyandi River (Nepal, Himalayas). However, most of these obser-5

vations are qualitative and the few studies that produced detailed GSD of the sources
of sediment for rivers focused either on landslide deposits (Casagli et al., 2003; Attal
and Lavé, 2006; Whittaker et al., 2010) or on soils (Marshall and Sklar, 2012).

In response to a relative drop in base-level, the Feather River rapidly incised into
bedrock and formed a gorge (Fig. 1). In the study area, the tributary basins have not10

had the time to readjust completely and typically exhibit a topographic break in slope
separating a low relief relict topography (plateau) from a steepened landscape (Fig. 2).
Erosion rates vary over an order of magnitude, from > 250 mm ka−1 in the Feather
River canyon to < 15 mm ka−1 on the low relief plateau (Riebe et al., 2000; Hurst et al.,
2012). This morphology offers a unique opportunity to assess the impact of increased15

erosion rates and associated slope steepening on sediment characteristics, both on
hillslopes and in rivers. Hillslope and river sediment characteristics were measured
both on the plateau and downstream of the main topographic break in slope in a series
of tributary basins to identify potential changes in sediment sources and to assess the
impact of changes in source and variations in channel slope on the characteristics of20

the sediment transported by rivers.
After a description of the study area and methods, we present the GSD data for

the hillslope sites (sources) and for the fluvial sites. In light of these data, we analyse
the relationships between source and fluvial sediment characteristics and discuss the
potential links between tectonics, slope steepness and sediment delivery and transport25

in mountain rivers.

1051

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-print.pdf
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
2, 1047–1092, 2014

Impact of erosion
rate on grain size

M. Attal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2 Study area and methods

This study focuses on basins draining an area where Mesozoic plutons have intruded
a metamorphic basement, east of Lake Oroville, in the Sierra Nevada of California
(Fig. 1). In response to an increase in the rate of base-level lowering, the origin and
timing of which are still debated (Wakabayashi and Sawyer, 2001; Stock et al., 2004;5

Gabet, 2014), the North Fork and Middle Fork Feather Rivers have formed gorges
up to 600 m deep (Figs. 1 and 3). These gorges dissect a relict low relief landscape
(Fig. 3) that has erosion rates an order of magnitude lower than the gorges: cosmo-
genic radionuclide-derived erosion rates in basins draining the Bald Rock and Cascade
plutons vary from 14.4±1.6 mm ka−1 on the plateau to rates in excess of 250 mm ka−1

10

in the steepest parts of the landscape (Riebe et al., 2000, see samples within their “Fall
River” area; Hurst et al., 2012). Many of the tributary basins which drain from the relict
surface to the North and Middle Fork Feather Rivers have been left hanging (Figs. 2
and 3): these basins typically exhibit a prominent convexity on their hillslopes and river
profiles, marking the boundary between the lower basin which has steepened in re-15

sponse to the increase in the rate of base-level drop and the upper basin which has
not yet detected the change in base-level lowering rate (Figs. 2 and 3) (e.g. Whipple
and Tucker, 2002; Crosby et al., 2006; Whittaker et al., 2008; Attal et al., 2008, 2011).
We have measured hillslope and fluvial sediment characteristics in tributary basins that
drain the Bald Rock and Cascade Pluton, where the source rock lithology is predom-20

inantly tonalite (Figs. 1 and 3) (Saucedo and Wagner, 1992). The fluvial dataset was
complemented with sites in two large tributaries of the Feather River: Cascade Creek
which incises into the Cascade Pluton in the lower half of its course and Little North
Fork River which mostly drains the metamorphic basement intruded by the Mesozoic
plutons. Both basins show signs of transience (break in slope on hillslopes and along25

the river) and were investigated to assess whether their behaviour was consistent with
the one exhibited by the smaller basins in response to the increase in the rate of base-
level lowering.
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2.1 Sources of sediment for the rivers

Sources of sediment in the study area comprise soils from soil-mantled hillslopes on
the low relief plateau and patchy soils, landslide deposits, scree cones and debris-flows
deposits in the steep, incised valleys near the Feather River. Evidence for rock failures
of various dimensions, from individual fragments to the release of hundreds of m3 of5

debris, is widespread on slopes above 0.7 m m−1. No recent debris-flows were docu-
mented in the study area but evidence for past debris-flows was found along rivers in
the steepened landscape below the prominent topographic break in slope. However,
the GSD of the debris-flow deposits found in the field could not be characterized be-
cause all of them had undergone substantial reworking after their emplacement. All10

source sites were chosen on the Bald Rock tonalite pluton, identified by both field
observations and geological map (Saucedo and Wagner, 1992). Sampling and mea-
surement methods are similar to the ones used by Attal and Lavé (2006) (see below).

All soil sampling sites are located in the Bald Rock Creek Basin (Figs. 3 and 4). Soil
pits were dug along hillslope transects in three morphologically distinct areas (Figs. 215

and 4): on the relict topography above the break in slope (POMD, mean hillslope gra-
dient Sh =0.38 m m−1), in the transition zone where the hillslopes have not completely
adjusted to the base-level fall (FTA, Sh =0.67 m m−1) and below the break in slope
(BRC and BRB, Sh =0.75 and 0.84 m m−1 respectively); the mean hillslope gradient
(Sh) represents the ratio of hillslope relief over the horizontal length of the hillslope,20

which is a reliable proxy for erosion rate in this area (Hurst et al., 2012). At each site,
soil pits were excavated to the depth of 20–30 cm below the soil-saprolite boundary.
The material extracted from the pits was sieved in the field using 10, 20 and 40 mm
square mesh sieves (Fig. 4b). Each fraction was weighed using a portable scale (ac-
curacy=20 grams) and fragments larger than 80 mm were weighed individually. Large25

fragments were found to be very lightly weathered; the size of the fragments larger
than 80 mm was thus calculated assuming that they were spheres with a density of
2650 kg m−3. Approximately one kilogram of the fraction finer than 10 mm was sampled

1053

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-print.pdf
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
2, 1047–1092, 2014

Impact of erosion
rate on grain size

M. Attal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and its GSD was determined in the lab, using 8, 5.6, 4, 2.8, 2, 1.4 and 1 mm square
mesh sieves. The GSD of the fraction finer than 1 mm was determined using a Malvern
laser grain size analyser. At the soil sampling sites, the mass of sediment sieved and
weighed ranged between 122 and 550 kg per pit, except at one site where the soil
was thin compared to the other sites and the soil-saprolite boundary was reached5

quickly: 63 kg of sediment were dug out and sieved at the steepest Bald Rock site
(BRB, Sh =0.84 m m−1) (Fig. 4).

Landslide deposits and scree cones were investigated exclusively east of the Bald
Rock Dome, immediately north of the Bald Rock Basin, where vegetation is scarce and
debris are being actively accumulated below the rocky face (Figs. 4 and 5). This was10

the only location where an active landsliding area could be accessed safely in the study
area. The three sampling points are located in places where the debris accumulation
has been cut by gullies or by the path, providing a clear cut through the deposit. LD1 is
located at mid-height in a debris fan whereas LD2 and LD3 are situated near the top of
landslide fans. The surface material was removed down to the depth of the largest clast15

exposed in the vicinity of the site to avoid bias caused by winnowing of the surface or
kinetic sieving during landsliding. Eighty-five to 115 kg of sediment were dug out, sieved
and weighed (Fig. 5). The procedure for determining the GSD of the landslide sediment
in the field and in the lab is identical to the one applied to soil material (see above).

Additionally, photographs of the surface of the scree cones and landslide deposits20

were taken at various locations below Bald Rock Dome. The field of each photograph
was typically one to two meters wide and high. A scale was placed at the centre of
the field before each photograph was taken. These images were then used to deter-
mine GSD: following Kellerhals and Bray (1971), a regular square grid with 100 line
intersections was placed on each photograph and the smallest axis of the clast at each25

intersection was measured. Clasts within the landslide deposits have no preferential
orientation, which means that the length of the smallest axis measured on the photo-
graph is a minimum estimate of the intermediate axis of the clasts. However, tonalite
clasts were typically found to be neither elongated nor platy (Fig. 5), thus limiting the
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deviation between the length measured on the photograph and the actual length of
the clast’s intermediate axis. Following Kellerhals and Bray’s recommendation based
on the voidless cube model (1971), clasts covering n grid intersections were counted
n times. According to this model, the GSD by number obtained from the photographs
is directly comparable to the GSD by mass derived from the volumetric samples. The5

limitations associated with this model are discussed further (Sect. 2.3).

2.2 Fluvial sediment

The methods used to determine the GSD of fluvial sediment are similar to the ones
used by Attal and Lavé (2006). Gravel bars were identified along the studied rivers,
including the river basin where soil sediment was investigated (Figs. 3, 6, and 7). We10

focused on material that had been unambiguously transported by fluvial processes,
and avoided lag deposits found where old debris-flow or landslide deposits had been
reworked (these latter deposits are characterised by extremely coarse sediment with
locked, moss covered particles that are indicative of low mobility). Surface and subsur-
face were distinguished to account for the armouring that typically characterises fluvial15

deposits (Bunte and Abt, 2001). Surface GSD was determined by photo analysis (see
Sect. 2.1); because pebbles tend to lie preferentially with their small axis perpendicular
to the surface of the gravel bar, the smallest visible axis on the photograph was consid-
ered as the intermediate axis of the pebble. Subsurface sediment was excavated from
a pit after removing the surface material over an area of approximately 0.5 by 0.5 m.20

This subsurface material was subjected to the same sieving and weighing procedure
as the soil samples (see Sect. 2.1). We maximised the amount of sediment sieved with
respect to the size of the largest clast at each site but our efforts were restricted by
the size of the gravel bars in these mountainous settings: some of the bars were small
(< 2 m2) and bounded by bedrock, which reduced the volume of sediment available for25

sieving. We were also unable to dig deep below the water level. The mass of sediment
sieved and weighed at each site typically ranged between 23 and 154 kg.
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Most of the rivers investigated have a large convexity on their long-profile which
marks the transition from the relict topography to the steepened landscape downstream
(Figs. 2, 3, and 6). Along stream variations in fluvial sediment GSD were determined in
three basins draining the tonalite pluton: measurements were performed at four sites
in Bald Rock Basin and at six sites in Bean Creek and Adams Creek Basins (Figs. 35

and 6a). Additional measurements in adjacent basins on the pluton were carried out on
the plateau (Berry Creek Basin) (Figs. 3 and 6a). Measurements in large rivers draining
multiple lithologies were carried out on the plateau (Cascade Creek) and in the gorge
(Little North Fork River) (Figs. 3 and 6b).

In the following analysis and discussion, we will distinguish “plateau” sites from10

“steepened landscape” sites (Fig. 6). Bean Creek sites will be treated separately due to
the absence of clear morphological boundary between plateau and incised landscape.

2.3 Sampling method bias and precision of measurements

Many sample-size recommendations have been made for representatively sampling
granular material (see extensive review in Bunte and Abt, 2001). For material typi-15

cally coarser than 128 mm, Church et al. (1987) recommend that the largest particle in
a sample represents no more than 5 % of the total mass of the sample to avoid unrep-
resentative positive skewness of the grain size distributions due to a few large clasts
representing a large proportion of the total sample. Due to logistical and geomorpho-
logical constraints, this recommendation was not fulfilled at one of the soil sites, at all20

landslide sites and at more than half of the fluvial sites (see Tables A1 and A2).
To assess the impact of the largest clast representing an excessively large fraction of

the volumetric sample on the determination of characteristic sediment grain sizes (i.e.,
median grain size D50 and 84th percentile D84), the following procedure was applied. In
the following example, the mass m of the largest clast represents n % of the total mass25

of the sample. Firstly, the largest clast was removed from the distribution to estimate
D50 and D84, had this large clast not been sampled; secondly, a large clast was added
to the distribution, its mass calculated so that it represents n% of the mass of the new
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volumetric sample (we observe that in all cases, this calculated mass is 1 to 1.1 times
the mass m of the largest clast in the actual sample). This procedure gives a robust
estimate of the potential variation in D50 and D84 induced by the inclusion or omission
of large clasts in the sample (see Tables A1 and A2). In the following, error bars on
grain sizes in figures will represent the range of values between the two scenarios5

mentioned above rather than uncertainty which cannot be calculated without a priori
knowledge of the true grain size distribution or applying an inevitably imperfect model
to represent this distribution.

Grid counts were performed on the surface of landslide and gravel bar sediment
using photographic methods (see Sects. 2.1 and 2.2). The number of clasts counted10

on each photograph typically ranged between 65 and 100, due to the image being
obscured by leaves, water or shadows in places (Table A2). Ideally, the size of the grid
applied to the photographs should be chosen so that no more than one grid intersection
falls on one sediment clast. Unfortunately, such requirement is nearly impossible to fulfil
at all sites in this mountainous setting where boulders larger than 0.5 m are present and15

gravel bars can sometimes be less than two-meter long. As mentioned above, clasts
covering n grid intersections were counted n times, following Kellerhals and Bray’s
method (1971) based on the voidless cube model. Whereas Bunte and Abt (2001)
agree that the voidless cube model may be applicable to armoured coarse gravel or
cobble beds, thus allowing a direct comparison of grid-by-number and volume-by-mass20

samples (Kellerhals and Bray, 1971; Bunte and Abt, 2001), they highlight that multiple
counting of particles over-represents large particles and produces GSD that are too
coarse in their coarse part. The effect of multiple counting is minimal on D50 but can be
substantial on D84 estimates. To assess the impact of large clasts covering n > 1 grid
nodes on the photographs on the determination of D50 and D84, we applied a similar25

procedure to the one used for the volumetric sample. Firstly, the largest clast was
removed from the distribution to estimate D50 and D84, had this large clast not been
sampled; secondly, a large clast similar in size to the largest clast in the actual sample
was added to the distribution, covering the same number of grid nodes than this largest
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clast (Table A2). This procedure does not account for multiple clasts covering multiple
nodes but it gives a rough estimate of the variation in grain size potentially induced by
the largest clast on the distribution, which is particularly significant for D84 (Table A2)
(Bunte and Abt, 2001). As with the volumetric samples, error bars on grain size in
figures will represent the range of values between the two scenarios mentioned above.5

2.4 Flow competence and sediment grain size

Flow competence dictates the maximum size of grains transported by a river for a given
discharge. Competence is commonly expressed as a function of fluvial shear stress
(e.g., Buffington and Montgomery, 1997) but this quantity is difficult to estimate in
mountain rivers. Instead, an alternative approach involves the use of water discharge10

per unit flow width. According to theory and flume experiments, a power relationship
(with an exponent 2/3 in the case of uniform grain size) is expected between the
grain size of the sediment entrained by a given water discharge Q and the quantity
ωm =QSM/W , where S is channel slope, W is channel width and M an exponent
ranging between 1.12 and 1.17 (Schoklitsch, 1962; Bathurst et al., 1987; Whitaker and15

Potts, 2007; Bathurst, 2013) (note that ωm would be proportional to specific stream
power if M were equal to unity). Measurements of the maximum grain size entrained
in a series of natural rivers also show a power relationship with Q/W for a given slope,
thus supporting the theory (measurements were made at a given site over a range of
discharges for each river: Whitaker and Potts, 2007; Bathurst, 2013).20

Large variations in ωm are expected along the rivers in the study area, in particular
at the main topographic break in slope where both discharge and slope will increase
downstream. In a situation where all grain sizes are potentially available for transport
in the river, river sediment is expected to become coarser as ωm increases, which we
will assess in the following. For simplicity, we assume that fluvial sediment transport25

and subsequent deposition in gravel bars occurred during floods resulting from storm
events with no spatial variation in intensity across the entire study area: we consider
that discharge scales with drainage area A (e.g., Snyder et al., 2003) and therefore
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assume that flow competence can be expressed as a function of ω′
m = ASM/W ; we

use a value of M =1.15 as representative of the range of values published in the lit-
erature (between 1.12 and 1.17; e.g., Whitaker and Potts, 2007; Bathurst, 2013). To-
pographic metrics and river profiles were extracted from a 1 m-resolution lidar-derived
Digital Elevation Model (DEM) obtained via the National Center for Airborne Laser Map-5

ping (NCALM). The data were complemented by 10 m-resolution topographic data from
USGS (National Elevation Dataset) in three basins that were not entirely covered by
the lidar data: Berry Creek, Cascade Creek and Little North Fork River. For each site,
drainage area and channel slope were extracted from the 1 m-resolution DEM, except
for the Cascade Creek and lowermost Berry Creek sites where the USGS DEM data10

were used instead (see Table A3). Slope was estimated over a 100 m distance; based
on field observations, this distance is deemed to reflect reach-scale geometry rather
than the local pool and riffle morphology. Similarly, minimum and maximum channel
widths were measured for each site over a 100 m long stretch on the lidar-derived
DEM and Google Map images: the mean width was used for the calculation of ω′

m and15

the difference between mean and extrema was used as deviation for width.

3 Results

3.1 Sources of sediment for the rivers

Our results show that sediments from landslides and scree cones are significantly
coarser than those from hillslope soils with no evidence of mass wasting (Figs. 8 and 9).20

For slopes steeper than 0.7 m m−1, mass wasting such as landsliding and formation
of scree cones delivers sediment with grain sizes more than one order of magnitude
larger than soils, as shown in median grain size D50 and 84th percentile of the distribu-
tion D84 (Figs. 8 and 9a). Soils typically contain less than 12 % mass of grains larger
than 10 mm, whereas fragments larger than 10 mm represent ∼ 70 % mass of the land-25

slide deposits investigated (Fig. 9b). When considering the cut-off size of 1 mm that
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separates material that can potentially be transported as suspended load from grains
that will be transported as bedload, the difference is less accentuated but still substan-
tial: landslide deposits contain around twice as much material coarser than 1 mm than
soils (Fig. 9b).

Furthermore, the type of source seems to influence the size of the largest particle to5

be supplied to the river: the size of the largest particle found in the soil pits is on aver-
age 89±64 mm (± SD), compared to 191±15 mm in the landslide deposits (Fig. 9a).
In addition, GSD derived from eighteen photos of the surface of landslide deposits in
the Bald Rock Dome area yielded D50 and D84 values of 81±84 and 187±126 mm
respectively; this indicates that surface landslide GSD is spatially highly variable and10

that boulder-size fragments are widespread within the landslide deposits, despite them
not being found in the pits we dug. The GSD of the measured landslide deposits falls
within the range of GSD measured by Casagli et al. (2003) in areas underlain by tur-
bidites and shales in the Apennines and by Attal and Lavé (2006) in areas underlain by
quartzites, gneiss and schists along the Marsyandi River (Himalayas).15

Within the soils, data from the Bald Rock Basin seems to indicate an increase in
D50, D84 and fraction coarser than 1 and 10 mm with increasing transect slope steep-
ness (Fig. 9). The difference in D50 between soils on slopes with gradients of 0.38 and
0.83 m m−1 is an order of magnitude, whereas D84 is larger in the steepest soils by
a factor of four (Fig. 9a). The fraction coarser than 10 mm increases from 2 to 11 %20

with increasing slope from 0.38 to 0.83 m m−1, while the fraction coarser than 1 mm
doubles, from around 25 % to more than 50 % of the sample (Fig. 9b).

3.2 Sediment transported by rivers

Sediment characteristics have been measured along the river in three basins: Adams
Creek Basin, Bean Creek Basin and Bald Rock Basin (Fig. 10). These basins have25

a drainage area of 10.1, 14.7 and 0.7 km2 respectively. First, we observe that most
gravel bars show an armouring of the surface, with surface sediment coarser than
subsurface sediment (squares and circles in Fig. 10, respectively). The Adams Creek
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Basin exhibits the most prominent break in slope (Figs. 3, 6a, and 10a). It is also the
basin in which grain size changes the most dramatically across the main profile con-
vexity: both surface and subsurface grain size (D50 and D84) increase substantially
downstream of the break in slope separating the plateau from the steepened land-
scape. In the Bean Creek Basin, the landscape is generally steeper than in the Adams5

Creek Basin and the transition from steepened landscape to upper catchment is more
subdued (Figs. 3, 6a, and 10b). Sediment tends to be coarser in this catchment than in
the Adams Creek Basin, except for the two lowermost sites which have a GSD similar
to the GSD at the two lowermost sites in the Adams Creek Basin. Upstream of these
two sites, data seem to show an overall downstream fining, with the uppermost site10

having the coarsest subsurface sediment in the entire Bean Creek Basin. The Bald
Rock Basin is the smallest of the three basins (Fig. 10c). Sediment in the channel is
fine grained compared to the basins discussed above, with D50 and D84 not exceeding
13 and 54 mm respectively. The data seem to show a slight downstream coarsening of
the sediment, with the uppermost site showing the finest GSD and the lowermost site15

exhibiting the coarsest GSD (see GSD on right panel in Fig. 10c). The amount of sedi-
ment within this channel is low compared to the other studied basins, as demonstrated
by substantial bedrock exposure in the channel, in particular downstream of the break
in slope where no sediment was found.

As mentioned in Sect. 2.4, a power-law relationship between the size of the grains20

entrained by the river and ω′
m would be expected: D = k (ω′

m)b with k a constant and
b an exponent equal to 2/3 in the case of uniform grain sizes (e.g., Bathurst, 2013).
The whole dataset collected in this study is noisy (Fig. 11) but it can be seen that sites
with the higher flow competence tend to have the coarsest sediment and vice-versa. In
Adams Creek, where ω′

m spans over two orders of magnitude, D50 and D84 data show25

a good agreement with a power-law relationship, demonstrating an increase in both
flow competence and grain size pass the main topographic break in slope (Table 1,
Fig. 11). However, the maximum grain size D100 is not as well correlated to ω′

m, in par-
ticular in the subsurface, in contradiction with theory, flume and field studies (Whitaker

1061

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-print.pdf
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
2, 1047–1092, 2014

Impact of erosion
rate on grain size

M. Attal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and Potts, 2007; Bathurst, 2013). The exponent b tends to be higher for D50 than for
D84, both for surface and subsurface samples. The range of ω′

m in Bean Creek and
Bald Rock Basin is too small to produce meaningful regressions.

When considering the morphological divisions in the studied landscape, it is notice-
able that steepened landscape sites have systematically higher flow competence than5

plateau sites (Fig. 11). Importantly, plateau sites tend to have smaller grain sizes than
steepened landscape sites; this is exemplified by the subsurface samples which have
not experienced armouring and are therefore more likely to be representative of the
sediment transported by the river (Fig. 11): D50, D84 and D100 on the plateau do not
exceed 35, 82 and 118 mm, respectively; in the steepened landscape, D50, D84 and10

D100 are in the ranges 20–101, 65–202 and 120–290 mm, respectively. These obser-
vations stand irrespective of basin size: the plateau site in the large Cascade Creek
Basin (solid circles in Fig. 11) has the highest ω′

m and the coarsest sediment of all
plateau sites but lower ω′

m and finer sediment than the steepened landscape sites.
Similarly, the data points from the sites along the incised Little North Fork River (open15

circles in Fig. 11) fall within the grain size and ω′
m domains delineated by the steepened

landscape data points. The Bean Creek sites sit at an intermediate position between
the steepened landscape and plateau sites in terms of flow competence but share the
range of grain size with steepened landscape sites.

4 Discussion20

4.1 Landscape steepness and the characteristics of the sources of sediment

Our results indicate that hillslope steepness partly controls the grain size of the sedi-
ment supplied to rivers by controlling the type of process by which sediment is supplied
(Figs. 8 and 9). Slope failures and scree cones are observed on slopes steeper than
0.7 m m−1. They provide much coarser sediment to river systems than the erosion of25
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soils does. Within soils, grain size seems to generally increase with increasing slope
steepness (Figs. 8 and 9).

The hillslope relief in a landscape is related to both erosion rate and the efficiency
of sediment transport processes (e.g., Roering et al., 2007). The soils we sampled de-
veloped on a similar parent material and have been subjected to a similar climate with5

similar vegetation (Chaparral, Oak, Pine). Our samples are only separated by several
hundred meters laterally and less than 150 m vertically. We thus assume that sediment
transport efficiency is similar at all of these sites. Consequently, differences in hillslope
relief or mean hillslope gradient Sh (the ratio of hillslope relief over the horizontal length
of the hillslope) in our field area should be driven by differences in erosion rates (Roer-10

ing et al., 2007; Hurst et al., 2012). These quantities can serve as a proxy for erosion
rates as long as slope gradients remain gentler than a threshold slope beyond which
landsliding processes begin to dominate; this threshold slope typically varies between
0.8 and 1.2 m m−1 (e.g., Roering et al., 1999; Binnie et al., 2007; DiBiase et al., 2010;
Matsushi and Matsuzaki, 2010) and was estimated ∼ 0.8 m m−1 in the study area (Hurst15

et al., 2012). We see that in the Bald Rock Basin, both D50 and D84 seem to gener-
ally increase with increasing Sh (Fig. 9) and therefore with erosion rate (Hurst et al.,
2012). In addition to modifying the GSD of the sediment on the hillslopes, increasing
erosion rates will lead to increasing sediment flux from hillslopes to rivers: as erosion
rates and hillslope steepness increase, rivers will be supplied with larger amounts of20

coarser sediment, thus enhancing the potential impact of changes in source GSD on
fluvial sediment GSD.

Erosion rates and soil thicknesses combine to control how long particles spend in
the soil (e.g., Small et al., 1999; Mudd and Furbish, 2006; Brantley and White, 2009;
Mudd and Yoo, 2010; Yoo et al., 2011). A greater time spent in the soil gives particles25

longer exposure to processes that can reduce grain sizes, such as exposure to salt
weathering (e.g., Wells et al., 2008), fracturing of rock due to root growth and tree
throw (e.g., Gabet and Mudd, 2010; Roering et al., 2010) and/or clay and secondary
mineral formation due to chemical weathering (e.g., Yoo and Mudd, 2008; Maher, 2010;
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Sweeney et al., 2012). We infer that the time particles spend within the weathering zone
is significantly shorter in the steeper transects, giving chemical weathering processes
less time to weaken parent material and resulting in coarser sediment. It can be seen
in the fraction finer than 10 mm that the lower the mean hillslope gradient (and thus, we
infer, the lower the erosion rate), the higher the clay and silt content and the lower the5

content in the fraction 1–10 mm (Fig. 8b). One metric to describe how long particles
remain in the soil is the turnover time, which is the ratio of soil thickness to erosion
rate multiplied by the ratio of soil density to rock density (Almond et al., 2007; Mudd
and Yoo, 2010). In a steadily eroding soil, the turnover time is equivalent to the mean
residence time of the particles (Mudd and Yoo, 2010). We quantified turnover time10

in the two “equilibrated” transects above and below the break in slope (POMD and
BRC, respectively; Figs. 2 and 4). In our study area, erosion rates can be estimated
as a function of hilltop curvature (Hurst et al., 2012): we calculate erosion rates of 0.06
and 0.1 mm ka−1 for POMD and BRC, respectively. Soil thickness is 0.51±0.09 and
0.45±0.12 for POMD and BRC, respectively (Yoo et al., 2011). Assuming a soil to rock15

density ratio of 1/2, a ratio common in granitic landscapes (Heimsath et al., 2001;
Riggins et al., 2011), we calculate a turnover time of ∼ 4.3 and 2.3 ka for the plateau
and steepened landscape transects, respectively, showing that landscape steepening
causes a halving of the turnover time in our study area.

Geochemical analysis of these soils shows that chemical weathering is most pro-20

nounced in the plateau transect POMD (Sh =0.38 m m−1, Figs. 2 and 4); it has the
highest pedogenic crystalline Fe oxide concentrations and is also the most enriched in
Zr and Ti, indicating a greater extent of chemical weathering (Yoo et al., 2011). Thus the
difference in grain size amongst the hillslope samples can be at least partially explained
through a chemical weathering mechanism: weathering of primary silicate minerals re-25

sults in clay production and so one would expect more chemically weathered soils to
be enriched in clays, as is the case in our field area (Fig. 8). Chemical weathering does
not break up coarse clasts directly, but it can make clasts more susceptible to physical
breakdown by weakening the clasts. We found that in the steep FTA, BRC and BRB
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transects (Sh =0.67–0.84 m m−1, Fig. 4), coarse clasts appeared to be nearly pristine
in terms of chemical weathering: there was little iron oxide staining and these clasts
would ring when hit with a rock hammer. Clasts within the POMD transect tended to
be stained with iron oxide (as supported by increased pedogenic crystalline Fe con-
tent; Yoo et al., 2011) and could be easily broken with a rock hammer. While these are5

admittedly qualitative observations, they are supported by the geochemical data which
show enhanced weathering in POMD relative to FTA, BRC and BRB (Yoo et al., 2011).

4.2 Landscape steepness and fluvial sediment GSD in mountainous
landscapes

Our data show that fluvial sediment grain size seems to generally increase with in-10

creasing flow competence (Fig. 11). The data are noisy but the trends are significant
in the Adams Creek Basin where there is a clear increase in both flow competence
and sediment grain size over the prominent break in slope that separates the steep-
ened landscape from the relict topography (Table 1, Figs. 10a and 11). The exponents
in the power relationship between grain size and ω′

m are lower than the value of 2/315

expected from theory and flume experiments with uniform grain size (Table 1), which
may reflect significant hiding/exposure effects in sediment composed of such a wide
range of grain sizes (up to boulder size) (Whitaker and Potts, 2007; Bathurst, 2013).
The exponent on D50 tends to be higher than on D84, indicating that the general in-
crease in grain size is caused by a coarsening of the bulk of the sediment rather than20

an increase in size at the coarse tail of the distribution, though the exponents are not
statistically discernible (Table 1).

In a situation where all grain sizes are available for fluvial transport, increasing flow
competence should lead to an increase in grain size through selective entrainment of
larger grains. In our study area, field observations and inspection of the 1 m-resolution25

lidar data suggest that a change in sediment source is also responsible for the in-
crease in fluvial sediment grain size. On the plateau, hillslope gradient rarely exceeds
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0.7 m m−1; hillslopes are soil mantled and we find no evidence for landslides. In addi-
tion, we find no coarse sediment available for transport along the studied rivers on the
plateau (Fig. 12a). This suggests that the fine-grained nature of the fluvial sediment on
the plateau is primarily due to the scarcity of coarse sediment supply. Below the break
in slope, landslides, scree cones and debris flows supply coarse sediment to the chan-5

nels: evidence for reworked debris-flow deposits and selective mobilisation of sediment
emplaced by mass wasting processes is widespread along the rivers below the break in
slope (Fig. 12b). We therefore interpret the increase in sediment coarseness from the
plateau to the steepened landscape as a result of an increase in both flow competence
and the size of the sediment supplied from hillslopes to the channels. This observation10

is consistent with previous studies in tectonically or climatically perturbed landscapes.
Whittaker et al. (2010) have shown that the grain size of fluvial sediment along rivers
in the Apennines increases at the transition from low relief soil-mantled landscape to
steep high relief landslide-prone landscape (see also Whittaker et al., 2007; Attal et al.,
2011). Attal and Lavé (2006) have also shown that fluvial sediment grain size along15

the Marsyandi River (Himalayas) increases at the transition from previously glaciated
till-covered landscape to steep high relief landslide-prone landscape; Attal and Lavé’s
(2006) measurements further indicated that till was a source of finer sediment to the
rivers than landslides.

Two basins depart noticeably from the general trend (Fig. 11). The Bald Rock Basin20

sites (solid triangles in Fig. 11) may represent a situation where the grain size of the
fluvial sediment is, at least temporarily, limited by sediment supply. In this small basin
(0.7 km2), fluvial sediment is fine grained and scarce, with D50 and D84 not exceeding
13 and 54 mm respectively (Fig. 10c). The channel has abundant bedrock exposure;
no sediment was found in the channel downstream of the break in slope. We interpret25

this situation as resulting from a shortage of sediment in the channel. The basin is soil-
mantled, entirely vegetated and we found no evidence of recent slope failure within the
basin, even below the break in slope. This may represent a transient situation where
the material supplied to the channel has been completely evacuated from the basin;
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sediment will be replenished in the channel when sediment flux from hillslopes will be
– at least temporarily – substantially increased, e.g. following forest fires.

The Bean Creek Basin appears to have undergone a different type of response com-
pared to the other basins. It exhibits no obvious topographic break in slope delimiting
the plateau from the steepened landscape (Figs. 3, 6a, and 10b). The whole basin5

is steeper than the plateau basins but less steep than the steepened landscape in
adjacent basins. It is steep enough to experience landslides and debris flows, both
processes supplying coarse sediment to the river, as observed in the field. Flow com-
petence at the Bean Creek sites tends to be higher than at the plateau sites and lower
than at the steepened landscape sites (Fig. 11). Fluvial sediment grain size in Bean10

Creek is coarser than at the plateau sites and within the range of values measured
at the steepened landscape sites, testifying again to the influence of source type on
fluvial sediment GSD (Fig. 11). The cause of this distinct response is unknown at that
stage.

The absence of “steepened landscape” sites with abnormally low grain size (Fig. 11)15

suggests a rapid response of the hillslopes (in terms of source characteristics) to river
steepening: as rivers steepen and increase their competence in response to the in-
crease in incision rate along the main stem of the Feather River, the adjacent hill-
slopes must steepen and respond rapidly to provide rivers with coarse sediment; if
the response of the hillslopes were slow, rivers would be supplied with fine-grained20

soil sediment immediately downstream of the main profile convexity and would thus
be transporting sediment finer than they have the capacity to transport. Instead, we
frequently observe coarse sediment that had unambiguously been transported by the
river no more than a few hundreds of meters downstream of the main topographic break
in slope, as exemplified by the Adams Creek data (Fig. 10a). This result is consistent25

with Hurst et al.’s (2012) topographic analysis in the study area which suggests that
the response time of hillslopes in this landscape is rapid relative to that of the stream
network.
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5 Conclusions

We have quantified the grain size distribution of sediment in both source areas (hillslope
soils and landslide deposits) and channels in a mountainous landscape where the
underlying lithology is exclusively tonalite and where erosion rates vary over an order
of magnitude (Riebe et al., 2000; Hurst et al., 2012). We find that the coarseness5

of hillslope sediment increases with increasing mean hillslope gradient (where mean
hillslope gradient represents the ratio of hillslope relief over the horizontal length of
the hillslope) and erosion rate. We hypothesize that, in our soil samples, this is due to
a decrease in residence time of rock fragments, causing particles to be exposed for
shorter periods of time to processes that can reduce grain sizes, such as exposure10

to salt weathering, fracturing of rock due to root growth and tree throw and/or clay
formation due to chemical weathering. For slopes in excess of 0.7 m m−1, mass wasting
processes (e.g., landsliding) and scree cones supply much coarser sediment to rivers,
with D50 and D84 more than one order of magnitude larger than in soils. Rapidly eroding
landscapes also contribute more sediment to rivers than slowly eroding slopes per unit15

area, thus for basins of equal size a rapidly eroding basin will contribute a much larger
amount of coarse sediment to the river network than a slowly eroding basin.

Changes in grain size and sediment fluxes from hillslopes are shown to impact the
grain size of the sediment transported by the rivers. Fluvial sediment in the tributary
basins hanging above the rapidly incising Feather River exhibits a significant down-20

stream coarsening. The locus of the increase in grain size coincides with the prominent
break in slope that developed along the river profiles in response to an increase in inci-
sion rate along the main stem of the Feather River. This increase in grain size is caused
by an increase in flow competence (mostly driven by channel steepening) but also by
a change in sediment source and in sediment dynamics: on the plateau upstream of25

the break in slope, rivers transport easily mobilised fine-grained sediment derived ex-
clusively from soils. Downstream of the break in slope, mass wasting processes supply
a wide range of grain sizes (up to bus-sized boulders) that rivers entrain selectively,

1068

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-print.pdf
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
2, 1047–1092, 2014

Impact of erosion
rate on grain size

M. Attal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

depending on the competence of their flow. The absence of evidence, below the break
in slope, for river reaches where the grain size of the fluvial sediment is limited by the
grain size of the sediment supplied from hillslopes suggests that the response time of
hillslopes to an increase in the rate of base-level lowering is rapid relative to that of the
stream network in this landscape.5
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Table 1. Statistical results for regression of D=k(ω′
m)b for Adams Creek data. D is taken as

D50, D84 and D100, both for subsurface and surface samples. Results are highly significant for
the exponent b (p < 0.01, except for D100 for the surface samples) but k is poorly constrained.

Grain size b Standard error t value p value logk Standard error t value p value Multiple R2

D50 sub. 0.55 0.10 5.5 0.005 −1.19 0.48 −2.5 0.070 0.88
D50 surface 0.61 0.10 6.3 < 0.001 −1.31 0.46 −2.8 0.023 0.83
D84 sub. 0.43 0.06 7.0 0.002 −0.16 0.29 −0.6 0.611 0.92
D84 surface 0.53 0.08 6.8 < 0.001 −0.55 0.37 −1.5 0.176 0.85
D100 sub. 0.20 0.06 3.6 0.024 1.14 0.27 4.3 0.013 0.76
D100 surface 0.40 0.08 5.1 < 0.001 0.24 0.38 0.6 0.549 0.76
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Table A1. Description of hillslope sites data. D100 is maximum grain size. Plus or minus values
are calculated according to procedure described in Sect. 2.3.

Site ID D50 (mm) D84 (mm) D100
(mm)

Total
sample
mass
(kg)

% mass
largest
clast

% mass
coarser
than
1 mm

% mass
coarser
than
10 mm

Mean
hillslope
gradient
Sh (m m−1)

− + − + ± ±

Soils
POMD2 0.12 < 0.01 < 0.01 1.25 < 0.01 < 0.01 58.3 227.0 0.1 % 21 < 0.5 1 < 0.5 0.38
POMD4 0.11 < 0.01 < 0.01 1.30 < 0.01 < 0.01 63.4 163.3 0.2 % 22 < 0.5 1 < 0.5 0.38
POMD6 0.10 < 0.01 < 0.01 1.65 < 0.01 < 0.01 40.0 550.4 0.02 % 29 < 0.5 2 < 0.5 0.38
FTA1 0.34 < 0.01 < 0.01 1.92 < 0.01 < 0.01 26.9 122.3 0.02 % 32 < 0.5 1 < 0.5 0.67
FTA9 0.36 0.11 0.12 3.55 1.43 109.20 220.0 173.0 8.5 % 39 6 12 9 0.67
BRC3 0.47 0.04 0.04 4.79 0.65 0.76 148.8 211.7 2.2 % 43 1 8 2 0.76
BRC0 0.22 < 0.01 < 0.01 2.00 < 0.01 < 0.01 79.1 189.0 0.4 % 31 < 0.5 2 < 0.5 0.76
BRB8-9h 1.15 < 0.01 < 0.01 7.02 < 0.01 < 0.01 77.3 63.8 1.0 % 53 < 0.5 11 < 0.5 0.83

Landslides
LD1 34.95 7.62 9.86 148.35 28.98 23.97 176.8 84.8 9.0 % 82 2 69 3 0.84
LD2 66.16 8.56 10.79 138.57 30.73 9.34 189.2 113.3 8.3 % 87 1 78 2 0.89
LD3 46.41 18.21 20.18 133.01 45.48 68.29 207.2 81.4 15.2 % 82 3 67 6 0.74
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Table A2. Description of fluvial sites data. Plus or minus values are calculated according to
procedure described in Sect. 2.3.

SUBSURFACE SURFACE
Site ID D50 (mm) D84 (mm) D100

(mm)
Total
sample
mass
(kg)

% mass
largest
clast

D50 (mm) D84 (mm) D100
(mm)

Number
of nodes
sampled

Nodes
covered
by
largest
clast

%
nodes
covered
by
largest
clast

− + − + − + − +

Adams Creek
BAC5 11.3 0.9 0.9 35.7 4.8 8.2 99.4 28.1 5 % 22.1 0.2 1.3 54.8 2.0 5.7 114.7 74 2 3 %
BAC6 4.8 0.2 0.3 19.3 1.2 1.6 53.3 42.8 2 % 5.6 0.4 0.1 19.4 1.9 3.6 38.2 92 3 3 %

9.2 0.1 0.1 18.9 0.1 0.7 44.3 89 1 1 %
6.3 0.1 0.2 19.7 1.1 4.3 45.0 69 1 1 %

BAC1 19.7 2.0 1.8 64.5 9.5 11.8 120.1 49.4 5 % 40.7 2.2 3.4 100.5 16.1 4.5 135.0 68 4 6 %
BAC2 36.2 8.0 14.0 114.6 14.4 17.6 142.1 36.6 11 % 31.4 7.4 9.6 96.9 12.7 13.8 112.3 94 13 14 %
BAC4 83.2 27.5 20.4 180.3 15.8 4.8 185.8 71.6 12 % 135.4 23.7 18.9 289.1 6.0 131.5 424.9 87 12 14 %

108.7 4.1 7.9 167.6 14.9 125.1 295.2 82 10 12 %
BAC3 101.4 18.6 22.3 166.7 3.9 1.7 169.1 57.2 12 % 185.6 1.6 3.2 389.4 33.2 6.4 466.6 66 2 3 %

178.0 6.9 0.7 244.7 8.0 9.4 259.6 86 9 10 %
116.6 2.6 1.6 136.2 5.0 49.4 209.2 59 5 8 %

Bald Rock B.
BRB-f2 1.3 0.1 0.1 12.5 2.0 2.4 78.1 27.5 3 % 5.9 0.1 0.1 29.8 0.7 2.3 62.4 88 1 1 %
BRB-f1 1.7 0.1 0.1 45.1 4.5 5.1 85.3 34.8 2 % 7.8 0.4 0.2 34.0 10.8 12.3 223.5 77 5 6 %
BRB-10f 1.3 0.1 0.0 11.6 4.4 4.2 80.0 23.0 4 % 3.7 0.1 0.1 16.7 0.6 0.9 36.6 91 1 1 %
BRB-8/9f 12.5 1.1 1.1 53.7 8.8 11.1 94.9 26.6 4 % 8.6 1.0 1.7 44.3 27.9 46.0 115.5 66 5 8 %

Bean Creek
BC6 82.7 31.1 38.2 184.4 25.8 18.5 200.9 59.4 19 % 73.5 4.4 23.3 145.3 3.1 31.1 177.9 60 8 13 %
BC5 42.0 11.7 7.1 107.7 7.4 7.6 132.4 36.9 9 % 96.6 21.9 1.0 191.9 65.6 16.7 211.5 84 10 12 %
BC3 23.6 1.1 1.3 68.9 4.4 4.9 96.9 44.6 3 % 33.8 19.4 3.2 81.9 7.8 12.3 120.2 74 5 7 %
BC4 52.8 5.7 7.1 98.9 5.8 30.0 163.3 61.5 10 % 103.4 7.7 11.4 159.1 3.7 2.4 328.5 55 4 7 %

66.0 7.6 10.9 149.9 45.0 36.1 192.5 83 10 12 %
BC2 62.9 10.7 14.9 166.7 49.7 23.3 211.0 118.1 11 % 71.5 0.3 0.3 93.8 1.3 1.1 146.5 59 1 2 %
BC1 80.5 18.8 10.5 134.0 19.6 41.9 211.4 114.2 11 % 130.1 14.7 22.2 270.4 39.2 33.9 309.3 93 11 12 %

1078

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-print.pdf
http://www.earth-surf-dynam-discuss.net/2/1047/2014/esurfd-2-1047-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
2, 1047–1092, 2014

Impact of erosion
rate on grain size

M. Attal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table A2. Continued.

SUBSURFACE SURFACE
Site ID D50 (mm) D84 (mm) D100

(mm)
Total
sample
mass
(kg)

% mass
largest
clast

D50 (mm) D84 (mm) D100
(mm)

Number
of nodes
sampled

Nodes
covered
by
largest
clast

%
nodes
covered
by
largest
clast

− + − + − + − +

Berry Creek
Baldf 2.2 0.4 0.6 25.1 9.2 29.4 83.2 11.4 7 % 2.1 0.1 0.1 78.7 56.2 78.6 161.2 89 10 11 %

10.0 0.1 0.6 35.1 8.9 3.3 138.9 94 3 3 %
10.7 0.2 0.0 34.8 0.5 5.1 133.8 98 2 2 %

BerC1f 22.5 0.5 0.5 43.9 3.4 5.1 80.0 28.6 3 % 23.4 0.8 1.8 53.3 5.7 13.4 92.2 77 5 6 %
25.2 2.5 1.0 69.5 6.5 10.5 104.8 98 7 7 %
20.1 0.1 0.7 47.4 3.9 3.7 77.3 84 3 4 %
22.2 1.3 1.4 53.3 0.5 0.6 86.6 97 1 1 %
26.7 4.6 4.5 51.5 7.7 17.7 75.1 98 13 13 %

Cascade Creek
CC 35.1 2.3 2.6 81.7 1.4 2.4 117.3 63.6 4 % 42.8 1.2 0.6 76.7 1.2 3.1 117.3 94 3 3 %

36.4 0.6 0.3 57.7 1.7 0.9 87.5 96 2 2 %
101.0 1.1 4.5 166.2 29.2 63.9 260.4 93 8 9 %

Little North
Fork River
LNF3 131.7 7.5 4.3 338.9 10.1 5.3 448.0 96 5 5 %

144.8 11.1 0.4 624.8 1.2 2.5 915.8 96 2 2 %
LNF1-2 55.1 20.8 39.7 202.1 92.7 93.6 289.6 153.8 22 % 266.7 50.0 1.1 570.7 3.0 1.2 599.2 99 5 5 %

37.1 4.7 6.6 146.6 20.3 9.6 179.0 119.5 7 % 283.8 17.1 57.8 522.3 77.1 534.5 1073.5 85 9 11 %
276.8 14.5 4.4 433.0 11.0 24.2 1072.1 92 2 2 %
109.5 3.9 5.2 302.8 1.1 2.9 563.6 98 3 3 %
149.0 4.6 4.2 243.7 1.7 1.6 795.9 97 4 4 %
66.1 0.6 1.3 283.6 0.5 0.5 316.4 96 1 1 %
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Table A3. Location and description of fluvial sites. Coordinates are in the UTM reference sys-
tem (zone 10◦ N, WGS1984). For each river, sites are ordered downstream (asterisk indicates
sites on tributaries). Drainage area and channel slope (calculated over 100 m) were extracted
from the 1 m-resolution lidar-derived DEM, except for the Cascade Creek and lowermost Berry
Creek sites where the 10 m resolution USGS DEM data were used instead. Minimum and
maximum channel widths were measured over a 100 m long stretch on lidar-derived DEM com-
plemented with GoogleMap images; mean width is given, with ± representing the difference
between mean and extrema.

Site ID Easting
(m)

Northing
(m)

Elevation
(m)

Drainage area
(km2)

Slope
(m m−1)

Width
(m)

Adams Creek
BAC5 644 550 4 394 120 1012 0.63 0.032 2.5±0.5
BAC6 644 460 4 393 420 970 1.39 0.028 4±2
BAC1 644 870 4 392 860 918 2.02 0.118 4±1
BAC2 644 840 4 392 720 887 2.07 0.345 2.5±0.5
BAC4* 644 880 4 392 640 849 7.79 0.149 3±1
BAC3 644 910 4 392 640 843 9.87 0.169 3±1

Bald Rock Basin
BRB-f2 645 245 4 389 820 739 0.17 0.206 3±1
BRB-f1 645 420 4 389 900 703 0.32 0.136 3±1
BRB-10f 645 485 4 389 940 692 0.37 0.134 4±1
BRB-8/9f 645 575 4 390 100 643 0.52 0.271 4±1

Bean Creek
BC6 644 500 4 390 200 947 0.15 0.154 2±1
BC5 643 405 4 387 800 492 5.81 0.074 5±2
BC3 643 535 4 387 220 454 10.04 0.038 4.5±1.5
BC4* 643 500 4 387 200 456 3.15 0.032 4±1
BC2 643 425 4 386 220 362 14.23 0.023 6±2
BC1 643 400 4 386 140 360 14.33 0.026 6±2

Berry Creek
Baldf 642 215 4 389 860 946 0.04 0.096 2±1
BerC1f 637 324 4 389 271 610 23.16 0.006 4.5±1.5

Cascade Creek
CC 654 814 4 397 091 1119 58.42 0.011 12.5±2.5

Little North Fork River
LNF3 647 534 4 400 281 839 104.13 0.075 20±5
LNF1-2 648 124 4 396 981 492 119.21 0.052 20±5
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Figure 1. Shaded topography of the study area showing the distribution of the Mesozoic plu-
tons (from Geological map of the Chico Quadrangle; Saucedo and Wagner, 1992) and the
studied rivers. Inset shows location of study area in California. Topographic data from USGS
(National Elevation Dataset). The spatial reference system is UTM Zone 10N with units in me-
ters. Plutons (bold): BRP-Bald Rock, CP-Cascade, GBP-Granite Basin, HBP-Hartman Bar, MP-
Merrimac. Rivers (bold italic): AC-Adams Creek, BC-Bean Creek, BeC-Berry Creek, BRC-Bald
Rock Creek, CC-Cascade Creek, LNFR-Little North Fork River, MFFR-Middle Fork Feather
River, NFFR-North Fork Feather River. LO-Lake Oroville.
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A

B

C

Channel steepening in response 
to rapid drop in base-level

Knickpoint 
propagating 
upstream

A- Relict topography: low relief, low mean hillslope gradient, low erosion rate.

B- Hillslope transition zone: hillslope steepens in response
to rapid river downcutting, leading to an increase
in mean hillslope gradient.

C- Steepened landscape: high relief,
high mean hillslope gradient,
high erosion rate.

Figure 2: Schematic illustrating the typical morphology of the Feather River’s tributary 
basins (adapted from Hurst et al., 2012). In response to a rapid drop in base-level, a 
knickpoint propagates upstream along the channel, separating the steepened landscape from 
the relict topography. A break in slope also propagates up the hillslopes (dots with arrows) in 
response to the increase in channel downcutting rate. Stars schematically represent the 
location of sampling sites with respect to morphological domains: on the relict topography 
(domain A, site identifier POMD), in the transition zone where the hillslopes have not 
completely adjusted (domain B, site identifier FTA) and in the steepened area below the break 
in slope (domain C, site identifier BRC and BRB for soils and LD for landslides). Note that 
the width of domain B is a function of the response time of the hillslopes (the shorter the 
response time, the narrower the domain B). 

Figure 2. Schematic illustrating the typical morphology of the Feather River’s tributary basins
(adapted from Hurst et al., 2012). In response to a rapid drop in base-level, a knickpoint prop-
agates upstream along the channel, separating the steepened landscape from the relict topog-
raphy. A break in slope also propagates up the hillslopes (dots with arrows) in response to the
increase in channel downcutting rate. Stars schematically represent the location of sampling
sites with respect to morphological domains: on the relict topography (domain A, site identifier
POMD), in the transition zone where the hillslopes have not completely adjusted (domain B,
site identifier FTA) and in the steepened area below the break in slope (domain C, site identifier
BRC and BRB for soils and LD for landslides). Note that the width of domain B is a function of
the response time of the hillslopes (the shorter the response time, the narrower the domain B).
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Figure 3. Slope map of the study area. The spatial reference system is UTM Zone 10N
with spatial units in meters. The studied rivers and basins are indicated, along with the sam-
pling sites: AC-Adams Creek, BC-Bean Creek, BeC-Berry Creek, BRC-Bald Rock Creek, CC-
Cascade Creek, LNFR-Little North Fork River, MFFR-Middle Fork Feather River, NFFR-North
Fork Feather River. Inset shows shaded relief of Adams Creek Basin hanging above the Middle
Fork Feather River; this diagram derived from lidar (1 m-resolution) data illustrates the typical
morphology exhibited by the tributary basins of the incised Feather River.
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Figure 4. (a) Shaded relief of Bald Rock Basin derived from lidar (1 m-resolution) data, showing
the location of the soil and landslide sites. Horizontal length of steepened reach is ∼ 550 m. (b)
Photograph of soil pit with sediment, showing the sieves used for sieving, heap of sediment
finer than 10 mm (to the right) and fractions 10–20 and 20–40 mm on the tarpaulin.
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Figure 5. Sediment at the landslide site LD2. Upper panel: overview with close up of pit (inset).
Lower panel: different sediment fractions extracted from the pit. Hammer is 300 mm long. Swiss
army knife is 90 mm long.
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Figure 6: Long profiles of the studied rivers with location of the sampling sites for fluvial 
sediment. (a) Small tributary basins of the Feather River (length < 12 km). (b) Two large 
tributaries of the Feather River (note change in scale on x-axis). We classify sites based on 
their position with respect to the topographic break in slope (see key); Bean Creek sites are 
treated separately due to the lack of clear morphological distinction between relict surface and 
steepened landscape.  
 

Figure 6. Long profiles of the studied rivers with location of the sampling sites for fluvial sedi-
ment. (a) Small tributary basins of the Feather River (length < 12 km). (b) Two large tributaries
of the Feather River (note change in scale on x axis). We classify sites based on their position
with respect to the topographic break in slope (see key); Bean Creek sites are treated sepa-
rately due to the lack of clear morphological distinction between relict surface and steepened
landscape.
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Figure 7. Example of gravel bar investigated in this study. (a) Overview and (b) sediment after
sieving.
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Figure 8. (a) Cumulative grain size distributions measured for the sources of sediment in Bald
Rock Basin (see sites location in Fig. 4). Line patterns reflect hillslope steepness at the sites (Sh
is mean hillslope gradient) and type of source (soil or landslide). Note the log2 scale on x axis.
(b) Non-cumulative grain size distribution of the fraction finer than 10 mm of soil samples. Line
patterns are the same as in (a). The percent mass has been normalized to represent the
value per 0.13 phi interval. Grain size distributions of fraction coarser and finer than 1 mm were
determined using sieves and a Malvern laser grain size analyser, respectively. Note the log2
scale on x axis.
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Figure 9: Grain size data for the sources of sediment: soils (circles) and landslides (squares). 
(a) Median grain size D50 and 84th percentile D84 as a function of hillslope steepness. (b) 
Percent mass of the total sample finer than 1 and 10 mm as a function of hillslope steepness. 
Error bars represent plus or minus values calculated according to procedure described in 
section 2.3. 

Figure 9. Grain size data for the sources of sediment: soils (circles) and landslides (squares).
(a) Median grain size D50 and 84th percentile D84 as a function of hillslope steepness. (b) Per-
cent mass of the total sample finer than 1 and 10 mm as a function of hillslope steepness. Error
bars represent plus or minus values calculated according to procedure described in Sect. 2.3.
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Figure 10. Grain size of the fluvial sediment along (a) Adams Creek, (b) Bean Creek and (c)
Bald Rock Creek. Left panels: D50 and D84 measured along the rivers (subsurface and sur-
face). Error bars represent plus or minus values calculated according to procedure described
in Sect. 2.3. River profiles are shown in green; note change in scale on x axis in (c). Right pan-
els: cumulative grain size distribution of subsurface sediment (note the log2 scale on x axis).
Inset grey shapes are schematic map representations of the basins showing the distribution of
the samples ((i) being the site the further upstream).
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Figure 11. Fluvial sediment grain size as a function of ω′
m. Grain sizes are shown for both

subsurface (left) and surface (right): D50 (top), D84 (middle) and D100 (bottom). Note the log–
log scale. Vertical error bars represent plus or minus values calculated according to procedure
described in Sect. 2.3. Horizontal bars reflect variability of channel width at the scale of the
100 m reaches considered (Sect. 2.3). We classify sites based on their position with respect to
the topographic break in slope (see key and Fig. 6); Bean Creek sites are treated separately due
to the lack of clear morphological distinction between relict surface and steepened landscape.
Lines in (a–d) represent best fit power regression for Adams Creek sites (Table 1) and are
shown as reference for comparison with other sites.
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Figure 12. Diagrams and photographs illustrating the contrast in sediment dynamics between
sites on the plateau and sites across the steepened landscape. (a) On the plateau, rivers are
fed with soil material and there is a clear lack of coarse material, even along large rivers;
the drainage area of Cascade Creek where the photo was taken is 58 km2 and the largest
pebble found in the area has a b axis of 260 mm. (b) Along the steepened reaches of the rivers
and in the gorges, a wide range of grain size is available and “lag” deposits are widespread,
that is, concentrations of very large clasts resulting from the reworking by fluvial processes of
material deposited by mass wasting processes. The very large boulders are up to 10 m in size
and are very unlikely to be mobilised by fluvial processes. Photographs show evidence for:
(top) reworking of debris-flow deposits near the confluence of Cascade Creek with the Feather
River; (bottom) selective mobilisation of sediment supplied by landslides and rock falls below
Bald Rock Dome in the Feather River. Standing people are circled on the photographs for scale.
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